Bounds and Inequalities Relating h-Index, g-Index, e-Index and Generalized Impact Factor: An Improvement over Existing Models
نویسنده
چکیده
In this paper, we describe some bounds and inequalities relating h-index, g-index, e-index, and generalized impact factor. We derive the bounds and inequalities relating these indexing parameters from their basic definitions and without assuming any continuous model to be followed by any of them. We verify the theorems using citation data for five Price Medalists. We observe that the lower bound for h-index given by Theorem 2, [formula: see text], g ≥ 1, comes out to be more accurate as compared to Schubert-Glanzel relation h is proportional to C(2/3)P(-1/3) for a proportionality constant of 1, where C is the number of citations and P is the number of papers referenced. Also, the values of h-index obtained using Theorem 2 outperform those obtained using Egghe-Liang-Rousseau power law model for the given citation data of Price Medalists. Further, we computed the values of upper bound on g-index given by Theorem 3, g ≤ (h + e), where e denotes the value of e-index. We observe that the upper bound on g-index given by Theorem 3 is reasonably tight for the given citation record of Price Medalists.
منابع مشابه
Bounds for the Co-PI index of a graph
In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.
متن کاملSome new bounds on the general sum--connectivity index
Let $G=(V,E)$ be a simple connectedgraph with $n$ vertices, $m$ edges and sequence of vertex degrees$d_1 ge d_2 ge cdots ge d_n>0$, $d_i=d(v_i)$, where $v_iin V$. With $isim j$ we denote adjacency ofvertices $v_i$ and $v_j$. The generalsum--connectivity index of graph is defined as $chi_{alpha}(G)=sum_{isim j}(d_i+d_j)^{alpha}$, where $alpha$ is an arbitrary real<b...
متن کاملOn generalized atom-bond connectivity index of cacti
The generalized atom-bond connectivity index of a graph G is denoted by ABCa(G) and defined as the sum of weights ((d(u)+d(v)-2)/d(u)d(v))aa$ over all edges uv∊G. A cactus is a graph in which any two cycles have at most one common vertex. In this paper, we compute sharp bounds for ABCa index for cacti of order $n$ ...
متن کاملOn Second Atom-Bond Connectivity Index
The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G) uvE (G ) (du dv 2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.
متن کاملBounds on First Reformulated Zagreb Index of Graph
The first reformulated Zagreb index $EM_1(G)$ of a simple graph $G$ is defined as the sum of the terms $(d_u+d_v-2)^2$ over all edges $uv$ of $G .$ In this paper, the various upper and lower bounds for the first reformulated Zagreb index of a connected graph interms of other topological indices are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012